Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37242440

ABSTRACT

With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36829914

ABSTRACT

The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.

3.
J Vis Exp ; (190)2022 12 02.
Article in English | MEDLINE | ID: mdl-36533843

ABSTRACT

Isothermal amplification-based techniques such as the rolling circle amplification have been successfully employed for the detection of nucleic acids, protein amounts, or other relevant molecules. These methods have shown to be substantial alternatives to PCR or ELISA for clinical and research applications. Moreover, the detection of protein amount (by Western blot or immunohistochemistry) is often insufficient to provide information for cancer diagnosis, whereas the measurement of enzyme activity represents a valuable biomarker. Measurement of enzyme activity also allows for the diagnosis and potential treatment of pathogen-borne diseases. In all eukaryotes, topoisomerases are the key DNA-binding enzymes involved in the control of the DNA topological state during important cellular processes and are among the important biomarkers for cancer prognosis and treatment. Over the years, topoisomerases have been substantially investigated as a potential target of antiparasitic and anticancer drugs with libraries of natural and synthetic small-molecule compounds that are investigated every year. Here, the rolling circle amplification method, termed rolling circle enhanced enzyme activity detection (REEAD) assay that allows for the quantitative measurement of topoisomerase 1 (TOP1) activity in a simple, fast, and gel-free manner is presented.By cleaving and ligating a specially designed DNA substrate, TOP1 converts a DNA oligonucleotide into a closed circle, which becomes the template for rolling circle amplification, yielding ~103 tandem repeat rolling circle products. Depending on the nucleotide incorporation during the amplification, there is the possibility of different readout methods, from fluorescence to chemiluminescence to colorimetric. As each TOP1-mediated cleavage-ligation generates one closed DNA circle, the assay is highly sensitive and directly quantitative.


Subject(s)
Neoplasms , Nucleic Acid Amplification Techniques , Humans , Nucleic Acid Amplification Techniques/methods , DNA , Oligonucleotides , Proteins
4.
Sensors (Basel) ; 22(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36298113

ABSTRACT

Restriction endonucleases are expressed in all bacteria investigated so far and play an essential role for the bacterial defense against viral infections. Besides their important biological role, restriction endonucleases are of great use for different biotechnological purposes and are indispensable for many cloning and sequencing procedures. Methods for specific detection of restriction endonuclease activities can therefore find broad use for many purposes. In the current study, we demonstrate proof-of-concept for a new principle for the detection of restriction endonuclease activities. The method is based on rolling circle amplification of circular DNA products that can only be formed upon restriction digestion of specially designed DNA substrates. By combining the activity of the target restriction endonuclease with the highly specific Cre recombinase to generate DNA circles, we demonstrate specific detection of selected restriction endonuclease activities even in crude cell extracts. This is, to our knowledge, the first example of a sensor system that allows activity measurements of restriction endonucleases in crude samples. The presented sensor system may prove valuable for future characterization of bacteria species or strains based on their expression of restriction endonucleases as well as for quantification of restriction endonuclease activities directly in extracts from recombinant cells.


Subject(s)
DNA, Circular , DNA , Cell Extracts , DNA/chemistry , DNA Restriction Enzymes/metabolism , Endonucleases/chemistry
5.
Nucleic Acids Res ; 50(11): 6332-6342, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687110

ABSTRACT

We have investigated the function of human topoisomerase 1 (TOP1) in regulation of G-quadruplex (G4) formation in the Pu27 region of the MYC P1 promoter. Pu27 is among the best characterized G4 forming sequences in the human genome and it is well known that promoter activity is inhibited upon G4 formation in this region. We found that TOP1 downregulation stimulated transcription from a promoter with wildtype Pu27 but not if the G4 motif in Pu27 was interrupted by mutation(s). The effect was not specific to the MYC promoter and similar results were obtained for the G4 forming promoter element WT21. The other major DNA topoisomerases with relaxation activity, topoisomerases 2α and ß, on the other hand, did not affect G4 dependent promoter activity. The cellular studies were supported by in vitro investigations demonstrating a high affinity of TOP1 for wildtype Pu27 but not for mutant sequences unable to form G4. Moreover, TOP1 was able to induce G4 formation in Pu27 inserted in double stranded plasmid DNA in vitro. This is the first time TOP1 has been demonstrated capable of inducing G4 formation in double stranded DNA and of influencing G4 formation in cells.


Subject(s)
DNA Topoisomerases, Type I , G-Quadruplexes , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc , DNA/genetics , DNA Topoisomerases, Type I/metabolism , Humans , Protein Binding , Proto-Oncogene Proteins c-myc/genetics
6.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: mdl-35563813

ABSTRACT

The murine cell line GRX has been introduced as an experimental tool to study aspects of hepatic stellate cell biology. It was established from livers of C3H/HeN mice that were infected with cercariae of Schistosoma mansoni. Although these cells display a myofibroblast phenotype, they can accumulate intracellular lipids and acquire a fat-storing lipocyte phenotype when treated with retinol, insulin, and indomethacin. We have performed genetic characterization of GRX and established a multi-loci short tandem repeat (STR) signature for this cell line that includes 18 mouse STR markers. Karyotyping further revealed that this cell line has a complex genotype with various chromosomal aberrations. Transmission electron microscopy revealed that GRX cells produce large quantities of viral particles belonging to the gammaretroviral genus of the Retroviridae family as assessed by next generation mRNA sequencing and Western blot analysis. Rolling-circle-enhanced-enzyme-activity detection (REEAD) revealed the absence of retroviral integrase activity in cell culture supernatants, most likely as a result of tetherin-mediated trapping of viral particles at the cell surface. Furthermore, staining against schistosome gut-associated circulating anodic antigens and cercarial O- and GSL-glycans showed that the cell line lacks S. mansoni-specific glycostructures. Our findings will now help to fulfill the recommendations for cellular authentications required by many granting agencies and scientific journals when working with GRX cells. Moreover, the definition of a characteristic STR profile will increase the value of GRX cells in research and provides an important benchmark to identify intra-laboratory cell line heterogeneity, discriminate between different mouse cell lines, and to avoid misinterpretation of experimental findings by usage of misidentified or cross-contaminated cells.


Subject(s)
Hepatic Stellate Cells , Kupffer Cells , Animals , Hepatic Stellate Cells/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Mice , Mice, Inbred C3H , Vitamin A/metabolism
7.
Pharmaceutics ; 13(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34452216

ABSTRACT

Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.

8.
Rep Biochem Mol Biol ; 8(4): 366-375, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32582794

ABSTRACT

BACKGROUND: DNA topoisomerases 1B are a class of ubiquitous enzyme that solves the topological problems associated with biological processes such as replication, transcription and recombination. Numerous sequence alignment of topoisomerase 1B from different species shows that the lengths of different domains as well as their amino acids sequences are quite different. In the present study a hybrid enzyme, generated by swapping the N-terminal of Plasmodium falciparum into the corresponding domain of the human, has been characterized. METHODS: The chimeric enzyme was generated using different sets of PCR. The in vitro characterization was carried out using different DNA substrate including radio-labelled oligonucleotides. RESULTS: The chimeric enzyme displayed slower relaxation activity, cleavage and re-ligation kinetics strongly perturbed when compared to the human enzyme. CONCLUSION: These results indicate that the N-terminal domain has a crucial role in modulating topoisomerase activity in different species.

9.
Cancers (Basel) ; 12(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423158

ABSTRACT

The heterogeneity of tumor cells and the potential existence of rare cells with reduced chemotherapeutic response is expected to play a pivotal role in the development of drug resistant cancers. Herein, we utilized the colon cancer cell lines, Caco2 and DLD1, to investigate heterogeneity of topoisomerase 1 (TOP1) activity in different cell subpopulations, and the consequences for the chemotherapeutic response towards the TOP1 targeting drug, camptothecin. The cell lines consisted of two subpopulations: one (the stem-cell-like cells) divided asymmetrically, was camptothecin resistant, had a differently phosphorylated TOP1 and a lower Casein Kinase II (CKII) activity than the camptothecin sensitive non-stem-cell-like cells. The tumor suppressor p14ARF had a different effect in the two cell subpopulations. In the stem-cell-like cells, p14ARF suppressed TOP1 activity and downregulation of this factor increased the sensitivity towards camptothecin. It had the opposite effect in non-stem-cell-like cells. Since it is only the stem-cell-like cells that have tumorigenic activity our results point towards new considerations for future cancer therapy. Moreover, the data underscore the importance of considering cell-to-cell variations in the analysis of molecular processes in cell lines.

10.
Eur J Med Chem ; 195: 112292, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32279049

ABSTRACT

The topoisomerase I enzymatic inhibition of hybrid quinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridines and quinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridin-6(5H)-ones was investigated. First, the synthesis of these fused compounds was performed by intramolecular [4 + 2]-cycloaddition reaction of functionalized aldimines obtained by the condensation of 3-aminopyridine and unsaturated aldehydes affording corresponding hybrid 5-tosylhexahydroquinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridine and tetrahydroquinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridin-6(5H)-one compounds with good to high general yields. Subsequent dehydrogenation led to the corresponding more unsaturated dihydro (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridine and (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridin-6(5H)-one derivatives in quantitative yields. The new polycyclic products show excellent-good activity as topoisomerase I (TopI) inhibitors that lead to TopI induced nicking of plasmids. This is consistent with the compounds acting as TopI poisons resulting in the accumulation of trapped cleavage complexes in the DNA. The cytotoxic effect on cell lines A549, SKOV3 and on non-cancerous MRC5 was also screened. Tetrahydroquinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridin-6(5H)-one 9 resulted the most cytotoxic compound with IC50 values of 3.25 ± 0.91 µM and 2.08 ± 1.89 µM against the A549 cell line and the SKOV3 cell line, respectively. Also, hexahydroquinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridine 8a and dihydroquinolino [4,3-b] (Siegel et al., 2013; Antony et al., 2003) [1,5]naphthyridine 10a showed good cytotoxicity against these cell lines. None of the compounds presented cytotoxic effects against non-malignant pulmonary fibroblasts (MRC-5).


Subject(s)
DNA Topoisomerases, Type I/metabolism , Naphthyridines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Humans , Molecular Docking Simulation , Protein Conformation , Quinolines/chemistry , Quinolines/metabolism , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology
11.
BMC Cancer ; 19(1): 1158, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783818

ABSTRACT

BACKGROUND: Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%. This variability may be due to the absence of reliable selective parameters for patient stratification. BC cell lines may serve as feasible models for generation of functional criteria that may be used to predict drug sensitivity for patient stratification and, thus, lead to more appropriate applications of CPT in clinical trials. However, no study published to date has included a comparison of multiple relevant parameters and CPT response across cell lines corresponding to specific BC subtypes. METHOD: We evaluated the levels and possible associations of seven parameters including the status of the TOP1 gene (i.e. amplification), TOP1 protein expression level, TOP1 activity and CPT susceptibility, activity of the tyrosyl-DNA phosphodiesterase 1 (TDP1), the cellular CPT response and the cellular growth rate across a representative panel of BC cell lines, which exemplifies three major BC subtypes: Luminal, HER2 and TNBC. RESULTS: In all BC cell lines analyzed (without regard to subtype classification), we observed a significant overall correlation between growth rate and CPT response. In cell lines derived from Luminal and HER2 subtypes, we observed a correlation between TOP1 gene copy number, TOP1 activity, and CPT response, although the data were too limited for statistical analyses. In cell lines representing Luminal and TNBC subtypes, we observed a direct correlation between TOP1 protein abundancy and levels of enzymatic activity. In all three subtypes (Luminal, HER2, and TNBC), TOP1 exhibits approximately the same susceptibility to CPT. Of the three subtypes examined, the TNBC-like cell lines exhibited the highest CPT sensitivity and were characterized by the fastest growth rate. This indicates that breast tumors belonging to the TNBC subtype, may benefit from treatment with CPT derivatives. CONCLUSION: TOP1 activity is not a marker for CPT sensitivity in breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/enzymology , Camptothecin/pharmacology , DNA Topoisomerases, Type I/metabolism , Drug Resistance, Neoplasm/drug effects , Topoisomerase I Inhibitors/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Topoisomerases, Type I/genetics , Female , Gene Dosage , Gene Expression , Humans , Phosphoric Diester Hydrolases/metabolism
12.
Arch Biochem Biophys ; 663: 165-172, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30653963

ABSTRACT

DNA topoisomerases are key enzyme responsible for modulating the topological state of the DNA by breaking and rejoining of DNA strand. Characterization of a Gly717Asp mutation in the human topoisomerase was performed using several catalytic assays. The mutant enzyme was shown to have comparable cleavage and fast religation rate as compared to the wild-type protein. Addition of the anticancer drug camptothecin significantly reduced the religation step. The simulative approaches and analysis of the cleavage/religation equilibrium indicate that the mutation is able to modify the architecture of the drug binding site, increasing the persistence of the drug for the enzyme-DNA covalent complex. Taken together these results indicate that the structure modification of the drug binding site is the key reason for the increasing CPT persistence and furthermore provide the possibility for new anti-cancer drug discovery.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Aspartic Acid/chemistry , Camptothecin/pharmacology , DNA Topoisomerases, Type I/metabolism , Glycine/chemistry , Mutation , Antineoplastic Agents, Phytogenic/metabolism , Binding Sites , Camptothecin/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Drug Resistance, Neoplasm/genetics , Humans , Kinetics , Proteolysis
13.
Cancer Genomics Proteomics ; 15(2): 91-114, 2018.
Article in English | MEDLINE | ID: mdl-29496689

ABSTRACT

Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations and a reduced modal chromosomal number compared to RPMI-8402. soaCGH analysis identified vast copy number alterations and >200 unbalanced DNA breakpoints distributed unevenly across the chromosomal complement in CPT-K5. In addition, the short tandem repeat alleles were found to be highly different between CPT-K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.


Subject(s)
Camptothecin/therapeutic use , Genomics/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Camptothecin/pharmacology , Cell Line , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
14.
Eur J Med Chem ; 149: 225-237, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29501943

ABSTRACT

This work describes the synthesis of 1,2,3,4-tetrahydroquinolinylphosphine oxides, phosphanes and phosphine sulfides as well as that of quinolinylphosphine oxides and phosphine sulfides, which were synthesized in good to high overall yield. The synthetic route involves a multicomponent reaction of (2-phosphine-oxide)-, 2-phosphine- or (2-phosphine-sulfide)-aniline, aldehydes and olefins and allows the selective generation of two stereogenic centres in a short, efficient and reliable synthesis. The selective dehydrogenation of 1,2,3,4-tetrahydroquinolinylphosphine oxides and phosphine sulfides leads to the formation of corresponding phosphorus substituted quinolines. Some of the products which were prepared showed excellent activity as topoisomerase I (Top1) inhibitors. In addition, prolonged effect of the most potent compounds is maintained with the same intensity even after 3 min of the beginning of the enzymatic reaction. The cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV03) and human embryonic kidney (HEK293) was also screened. 1,2,3,4-Tetrahydroquinolinylphosphine oxide 6g with an IC50 value of 0.25 ±â€¯0.03 µM showed excellent activity against the A549 cell line in vitro, while 1,2,3,4-tetrahydroquinolinylphosphane 9c with an IC50 value of 0.08 ±â€¯0.01 µM and 1,2,3,4-tetrahydroquinolinylphosphine sulfide derivative 10f with an IC50 value of 0.03 ±â€¯0.04 µM are more active against the A549 cell line. Moreover, selectivity towards cancer cell (A549) over non-malignant cells (MRC5) has been observed. According to their structure, they may be excellent antiproliferative candidates.


Subject(s)
Cell Proliferation/drug effects , Phosphorus/chemistry , Quinolines/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Hydrogenation , Phosphines , Structure-Activity Relationship
15.
Arch Biochem Biophys ; 643: 1-6, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29458004

ABSTRACT

Human topoisomerase 1B is a ubiquitous and essential enzyme involved in relaxing the topological state of supercoiled DNA to allow the progression of fundamental DNA metabolism. Its enzymatic catalytic cycle consists of cleavage and religation reaction. A ternary fluorescence resonance energy transfer biosensor based on a suicide DNA substrate conjugated with three fluorophores has been developed to monitor both cleavage and religation Topoisomerase I catalytic function. The presence of fluorophores does not alter the specificity of the enzyme catalysis on the DNA substrate. The enzyme-mediated reaction can be tracked in real-time by simple fluorescence measurement, avoiding the use of risky radioactive substrate labeling and time-consuming denaturing gel electrophoresis. The method is applied to monitor the perturbation brought by single mutation on the cleavage or religation reaction and to screen the effect of the camptothecin anticancer drug monitoring the energy transfer decrease during religation reaction. Pathological mutations usually affect only the cleavage or the religation reaction and the proposed approach represent a fast protocol for assessing chemotherapeutic drug efficacy and analyzing mutant's properties.


Subject(s)
DNA Topoisomerases, Type I/metabolism , DNA/metabolism , Enzyme Assays/methods , Fluorescence Resonance Energy Transfer , Base Sequence , DNA/genetics , Fluorescent Dyes/metabolism , Humans , Protein Binding
16.
Nanoscale ; 9(36): 13546-13553, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28872165

ABSTRACT

With increasing recognition of the importance in addressing cell-to-cell heterogeneity for the understanding of complex biological systems, there is a growing need for assays capable of single cell analyses. In the current study, we describe the measurement of human topoisomerase I activity in single CD44 positive Caco2 cells specifically captured from a mixed population on glass slides, which were dual functionalized with anti-CD44-antibodies and specific DNA primers. On-slide lysis of captured CD44 positive cells, resulted in the release of human topoisomerase I, allowing the enzyme to circularize a specific linear DNA substrate added to the slides. The generated circles hybridized to the anchored DNA primers and acted as templates for a solid support rolling circle amplification reaction leading to the generation of long tandem repeat products that were detected at the single molecule level in a fluorescent microscope upon hybridization of fluorescent labelled probes. The on-slide detection system was demonstrated to be directly quantitative and specific towards CD44 positive cells. Moreover, it allowed reproducible detection of human topoisomerase I activity in single cells.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Single-Cell Analysis/methods , Caco-2 Cells , DNA Primers , Fluorescent Dyes , Humans , Hyaluronan Receptors
17.
Nanoscale ; 9(5): 1886-1895, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28094391

ABSTRACT

The continuous need for the development of new small molecule anti-cancer drugs calls for easily accessible sensor systems for measuring the effect of vast numbers of new drugs on their potential cellular targets. Here we demonstrate the use of an optical DNA biosensor to unravel the inhibitory mechanism of a member of a new family of small molecule human topoisomerase I inhibitors, the so-called indeno-1,5-naphthyridines. By analysing human topoisomerase I catalysis on the biosensor in the absence or presence of added drug complemented with a few traditional assays, we demonstrate that the investigated member of the indeno-1,5-naphthyridine family inhibited human topoisomerase I activity by blocking enzyme-DNA dissociation. To our knowledge, this represents the first characterized example of a small molecule drug that inhibits a post-ligation step of catalysis. The elucidation of a completely new and rather surprising drug mechanism-of-action using an optical real time sensor highlights the value of this assay system in the search for new topoisomerase I targeting small molecule drugs.


Subject(s)
Biosensing Techniques , DNA Topoisomerases, Type I/chemistry , Naphthyridines/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , DNA , Humans , Molecular Structure , Molecular Targeted Therapy
18.
Eur J Med Chem ; 115: 179-90, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27017547

ABSTRACT

In an effort to establish new candidates with improved anticancer activity, we report here the synthesis of various series of 7H-indeno[2,1-c][1,5]-naphthyridines and novel 7H-indeno[2,1-c][1,5]-naphthyridine-7-ones and 7H-indeno[2,1-c][1,5]-naphthyridine-7-ols. Most of the products which were synthesized were able to inhibit Topoisomerase I activity. Moreover, in vitro testing demonstrated that a subset of the products exhibited a cytotoxic effect on cell lines derived from human breast cancer (BT 20), human lung adenocarcinoma (A 549), or human ovarian carcinoma (SKOV3).


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Naphthyridines/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthyridines/chemical synthesis , Naphthyridines/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemistry
19.
Methods Mol Biol ; 1346: 209-19, 2015.
Article in English | MEDLINE | ID: mdl-26542724

ABSTRACT

Cellular heterogeneity has presented a significant challenge in the studies of biology. While most of our understanding is based on the analysis of ensemble average, individual cells may process information and respond to perturbations very differently. Presented here is a highly sensitive platform capable of measuring enzymatic activity at the single-cell level. The strategy innovatively combines a rolling circle-enhanced enzyme activity detection (REEAD) assay with droplet microfluidics. The single-molecule sensitivity of REEAD allows highly sensitive detection of enzymatic activities, i.e. at the single catalytic event level, whereas the microfluidics enables isolation of single cells. Further, confined reactions in picoliter-sized droplets significantly improve enzyme extraction from human cells or microorganisms and result in faster reaction kinetics. Taken together, the described protocol is expected to open up new possibilities in the single-cell research, particularly for the elucidation of heterogeneity in a population of cells.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Enzyme Assays/methods , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , DNA Topoisomerases, Type I/analysis , Enzyme Assays/instrumentation , Equipment Design , Humans , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation
20.
ACS Nano ; 9(11): 11166-76, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26445172

ABSTRACT

Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.


Subject(s)
Computer Systems , DNA Topoisomerases, Type I/metabolism , Electronics/methods , Graphite/chemistry , Staining and Labeling , Base Sequence , Biocatalysis , Humans , Kinetics , Molecular Sequence Data , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...